

System-Side Impedance Track[™] Fuel Gauge With Integrated LDO

Check for Samples: bq27520-G4

FEATURES

- Single series cell Li-Ion battery fuel gauge resides on system board
 - Integrated 2.5 VDC LDO
 - External low-value 10 m sense resistor
 - Patented Impedance Track™ technology
 - Adjusts for battery aging, self-discharge, temperature, and rate changes
 - Reports Remaining Capacity, State of Charge (SOC), and Time-to-Empty
 - Optional Smoothing Filter
 - Battery State of Health (aging) estimation
 - Supports embedded or removable packs with up to 32Ahr capacity
 - Accomodates pack swapping with 2 separate battery profiles
 - Microcontroller peripheral supports:
 - 400-kHz I²C [™] serial interface
 - 32 Bytes of Scratch-Pad FLASH NVM
 - Battery Low digital ouptut warning
 - Configurable SOC Interrupts
 - External thermistor, internal sensor, or host reported temperature options
- Tiny 15-pin 2610 × 1956 µm, 0.5 mm pitch NanoFree™ (CSP) package

APPLICATIONS

- Smartphones, Feature phones and Tablets
- Digital Still and Video Cameras
- Handheld Terminals
- MP3 or Multimedia Players

DESCRIPTION

The Texas Instruments bq27520-G4 system-side Lilon battery fuel gauge is a microcontroller peripheral that provides fuel gauging for single-cell Li-lon battery packs. The device requires little system microcontroller firmware development. The bq27520-G4 resides on the system's main board and manages an embedded battery (non-removable) or a removable battery pack.

The bq27520-G4 uses the patented Impedance TrackTM algorithm for fuel gauging, and provides information such as remaining battery capacity (mAh), state-of-charge (%), run-time to empty (min), battery voltage (mV), temperature (°C) and state of health (%).

Battery fuel gauging with the bq27520-G4 requires only PACK+ (P+), PACK- (P-), and optional Thermistor (T) connections to a removable battery pack or embedded battery circuit. The device uses a 15-ball NanoFreeTM (CSP) package in the nominal dimensions of 2610 × 1956 μ m with 0,5 mm lead pitch. It is ideal for space constrained applications.

TYPICAL APPLICATION

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Impedance Track, NanoFree are trademarks of Texas Instruments. is a trademark of ~NXP B.V. Corp Netherlands.

bq27520-G4

SLUSB20-NOVEMBER 2012

www.ti.com

These devices have limited built-in ESD protecti EiSprotet at a f 13)Tj 20.3 13.2 re 0 0 0 rg f 423.2 re 0 0 0 rg f 423T66m.2 re 0 0 0 0 rg f 423.2

PIN ASSIGNMENT AND PACKAGE DIMENSIONS

Table 1. PIN FUNCTIONS

PIN		

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	PARAMETER	VALUE	UNIT
V _{REGIN}	Regulator input range	-0.3 to 5.5	V
		-0.3 to 6.0 ⁽²⁾	V
V _{CE}	CE input pin	-0.3 to V _{REGIN} + 0.3	V
V _{CC}	Supply voltage range	-0.3 to 2.75	V
V _{IOD}	Open-drain I/O pins (SDA, SCL, SOC_INT)	-0.3 to 5.5	V
V _{BAT}	BAT input pin	-0.3 to 5.5	V
		-0.3 to 6.0 ⁽²⁾	V
VI	Input voltage range to all other pins (BI/TOUT , TS , SRP, SRN, BAT_GD)	-0.3 to V _{CC} + 0.3	V
500	Human-body model (HBM), BAT pin	1.5	1.1/
ESD	Human-body model (HBM), all other pins	2	ĸv
T _A	Operating free-air temperature range	-40 to 85	°C
T _{stq}	Storage temperature range	-65 to 150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Condition not to exceed 100 hours at 25 °C lifetime.

RECOMMENDED OPERATING CONDITIONS

 $T_A = -40^{\circ}C$ to 85°C, $V_{REGIN} = V_{BAT} = 3.6V$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Varan	Supply voltage	No operating restrictions	2.8		4.5	V
VREGIN	Supply voltage	No FLASH writes	2.45	2.8	v	
C _{REGIN}	External input capacitor for internal LDO between REGIN and V_{SS}	Nominal capacitor values specified.		0.1		
C _{LDO25}	External output capacitor for internal LDO between V_{CC} and V_{SS}	capacitor located close to the device.	0.47	1		μF
t _{PUCD}	Power-up communication delay			250		ms

SUPPLY CURRENT

 $T_A = 25^{\circ}C$ and $V_{REGIN} = V_{BAT} = 3.6V$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{CC} ⁽¹⁾	Normal operating-mode current	Fuel gauge in NORMAL mode. I _{LOAD} > <i>Sleep Current</i>		118		μA
I _{SLP+} ⁽¹⁾	Sleep+ operating mode current	Fuel gauge in SLEEP+ mode. I _{LOAD} < <i>Sleep Current</i>		62		μA
I _{SLP} ⁽¹⁾	Low-power storage-mode current	Fuel gauge in SLEEP mode. I _{LOAD} < <i>Sleep Current</i>		23		μA
I _{HIB} ⁽¹⁾	Hibernate operating-mode current	Fuel gauge in HIBERNATE mode. I _{LOAD} < <i>Hibernate Current</i>		8		μA

(1) Specified by design. Not production tested.

bq27520-G4 SLUSB20 – NOVEMBER 2012

www.ti.com

ADC (TEMPERATURE AND CELL MEASUREMENT) CHARACTERISTICS

 $T_A = -40^{\circ}$ C to 85°C, 2.4 V < V_{CC} < 2.6 V; typical values at $T_A = 25^{\circ}$ C and V_{CC} = 2.5 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{A1}	Input voltage range (TS)		V _{SS} – 0.125		2	V
V _{A2}	Input voltage range (BAT)		V _{SS} – 0.125		5	V
V _{IN(ADC)}	Input voltage range		0.05		1	V
G _{TEMP}	Internal temperature sensor voltage gain			-2		mV/°C
t _{ADC_CONV}	Conversion time				125	ms
	Resolution		14		15	bits
V _{OS(ADC)}	Input offset			1		mV
Z _{ADC1} ⁽¹⁾	Effective input resistance (TS)		8			М
Z _{ADC2} ⁽¹⁾	Effective input resistance (BAT)	bq27520-G4 not measuring cell voltage	8			Μ
_	· · · ·	bq27520-G4 measuring cell voltage		100		k
I _{lkg(ADC)} ⁽¹⁾	Input leakage current				0.3	μA

(1) Specified by design. Not tested in production.

INTEGRATING ADC (COULOMB COUNTER) CHARACTERISTICS

 $T_A = -40^{\circ}C$ to 85°C, 2.4 V < V_{CC} < 2.6 V; typical values at $T_A = 25^{\circ}C$ and $V_{CC} = 2.5$ V (unless otherwise noted)

			•			
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{SR}	Input voltage range, $V_{(SRN)}$ and $V_{(SRP)}$	$V_{SR} = V_{(SRN)} - V_{(SRP)}$	-0.125		0.125	V
t _{SR_CONV}	Conversion time	Single conversion		1		s
	Resolution		14		15	bits
V _{OS(SR)}	Input offset			10		μV
INL	Integral nonlinearity error			±0.007	±0.034	% FSR
Z _{IN(SR)} ⁽¹⁾	Effective input resistance		2.5			М
I _{lkg(SR)} ⁽¹⁾	Input leakage current				0.3	μA

(1) Specified by design. Not tested in production.

DATA FLASH MEMORY CHARACTERISTICS

 $T_A = -40^{\circ}$ C to 85°C, 2.4 V < V_{CC} < 2.6 V; typical values at $T_A = 25^{\circ}$ C and V_{CC} = 2.5 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{DR} ⁽¹⁾	Data retention		10			Years
	Flash-programming write cycles ⁽¹⁾		20,000			Cycles
t _{WORDPROG} ⁽¹⁾	Word programming time				2	ms
I _{CCPROG} ⁽¹⁾	Flash-write supply current			5	10	mA
t _{DFERASE} (1)	Data flash master erase time		200			ms
t _{IFERASE} ⁽¹⁾	Instruction flash master erase time		200			ms
t _{PGERASE} (1)	Flash page erase time		20			ms

(1) Specified by design. Not production tested

I²C-COMPATIBLE INTERFACE COMMUNICATION TIMING CHARACTERISTICS

 $T_A = -40^{\circ}$ C to 85°C, 2.4 V < V_{CC} < 2.6 V; typical values at $T_A = 25^{\circ}$ C and V_{CC} = 2.5 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
t _r	SCL/SDA rise time				300	ns
t _f	SCL/SDA fall time				300	ns
t _{w(H)}	SCL pulse duration (high)		600			ns
t _{w(L)}	SCL pulse duration (low)		1.3			μs
t _{su(STA)}	Setup for repeated start		600			ns
t _{d(STA)}	Start to first falling edge of SCL		600			ns
t _{su(DAT)}	Data setup time		100			ns
t _{h(DAT)}	Data hold time		0			ns
t _{su(STOP)}	Setup time for stop		600			ns
t _(BUF)	Bus free time between stop and start		66			μs
f _{SCL}	Clock frequency (1)				400	kHz

 If the clock frequency (f_{SCL}) is > 100 kHz, use 1-byte write commands for proper operation. All other transactions types are supported at 400 kHz. (Refer to I²C INTERFACE and I²C Command Waiting Time)

Figure 1. I²C-Compatible Interface Timing Diagrams

Control(): 0x00/0x01

Issuing a *Control()* command requires a subsequent 2-byte subcommand. These additional bytes specify the particular control function desired. The *Control()* command allows the system to control specific features of the bq27520-G4 during normal operation and additional features when the device is in different access modes, as described in Table 3. Additional details are found in the *bq27520-G4 Technical Reference Manual*.

CNTL FUNCTION	CNTL DATA	SEALED ACCESS	DESCRIPTION
CONTROL_STATUS	0x0000	Yes	Reports the status of DF checksum, hibernate, IT, etc.
DEVICE_TYPE	0x0001	Yes	Reports the device type (eg: 0x0520)
FW_VERSION	0x0002	Yes	Reports the firmware version on the device type
PREV_MACWRITE	0x0007	Yes	Returns previous Control() subcommand code
CHEM_ID	0x0008	Yes	Reports the chemical identifier of the Impedance Track [™] configuration
OCV_CMD	0x000c	Yes	Request the gauge to take a OCV measurement
BAT_INSERT	0x000d	Yes	Forces Flags() [BAT_DET] bit set when OpConfig B [BIE] = 0
BAT_REMOVE	0x000e	Yes	Forces Flags() [BAT_DET] bit clear when OpConfig B [BIE] = 0
SET_HIBERNATE	0x0011	Yes	Forces CONTROL_STATUS [HIBERNATE] to 1
CLEAR_HIBERNATE	0x0012	Yes	Forces CONTROL_STATUS [HIBERNATE] to 0
SET_SLEEP+	0x0013	Yes	Forces CONTROL_STATUS [SNOOZE] to 1
CLEAR_SLEEP+	0x0014	Yes	Forces CONTROL_STATUS [SNOOZE] to 0
DF_VERSION	0x001F	Yes	Returns the Data Flash Version code
SEALED	0x0020	No	Places the bq27520-G4 in SEALED access mode
IT_ENABLE	0x0021	No	Enables the Impedance Track [™] (IT) algorithm
RESET	0x0041	No	Forces a full reset of the bq27520-G4

Table 3. Control() Subcommands

FUNCTIONAL DESCRIPTION

The bq27520-G4 measures the voltage, temperature, and current to determine battery capacity and state of charge (SOC) based on the patented Impedance TrackTM algorithm (Refer to Application Report SLUA450, *Theory and Implementation of Impedance Track Battery Fuel-Gauging Algorithm* for more information). The bq27520-G4 monitors charge and discharge activity by sensing the voltage across a small-value resistor (5 m to 20 m typ.) between the SRP and SRN pins and in series with the battery. By integrating charge passing through the battery, the battery's SOC is adjusted during battery charge or discharge.

Battery capacity is found by comparing states of charge before and after applying the load with the amount of charge passed. When a system load is applied, the impedance of the battery is measured by comparing the open circuit voltage (OCV) obtained from a predefined function for present SOC with the measured voltage under load. Measurements of OCV and charge integration determine chemical state of charge and chemical capacity (Qmax). The initial Qmax values are taken from a cell manufacturers' data sheet multiplied by the number of parallel cells. It is also used for the value in **Design Capacity**. The bq27520-G4 acquires and updates the battery-impedance profile during normal battery usage. It uses this profile, along with SOC and the Qmax value, to determine *FullChargeCapacity()* and *StateOfCharge()*, specifically for the present load and temperature. *FullChargeCapacity()* is reported as capacity available from a fully charged battery under the present load and temperature until *Voltage()* reaches the *Terminate Voltage*. *NominalAvailableCapacity()* and *FullAvailableCapacity()* are the uncompensated (no or light load) versions of *RemainingCapacity()* and *FullChargeCapacity()* respectively.

The bq27520-G4 has two *Flags()* bits and two pins to warn the host if the battery's SOC has fallen to critical levels. If *RemainingCapacity()* falls below the first capacity threshold specified by **SOC1 Set Threshold**, the *Flags()* [SOC1] bit is set and is cleared if *RemainingCapacity()* rises above the **SOC1 Clear Threshold**. If enabled via **OpConfig C [BATLSPUEN]**, the BAT_LOW pin reflects the status of the [SOC1] flag bit. Also, if enabled by **OpConfig B [BL_INT]**, the SOC_INT will toggle upon a state change of the [SOC1] flag bit.

As *Voltage()* falls below the **SysDown Set Volt Threshold**, the *Flags()* [SYSDOWN] bit is set and SOC_INT will toggle once to provide a final warning to shut down the system. As *Voltage()* rises above **SysDown Clear** *Voltage* the [SYSDOWN] bit is cleared and SOC_INT will toggle once to signal the status change.

Additional details are found in the *bq*27520-G4 Technical Reference Manual.

To ensure proper operation at 400 kHz, a $t_{(BUF)}$ 66 µs bus free waiting time should be inserted between all packets addressed to the bq27520-G4. In addition, if the SCL clock frequency (f_{SCL}) is > 100 kHz, use individual 1-byte write commands for proper data flow control. The following diagram shows theco2 Tz 0 f 123.5 Tz 0 0 0 rg 54 67(

Ĵ	ADD		A	CMD	A	DA A	A	μs				
Ĵ	ADD	Ĺ	А	CMD	A	DA A	A	μs				
Ĵ	ADD		A	CMD	A r	ADD	A	DA A	A	DA A	N	μS
			tn	t a pearted by	twoon two	1 byto wr	to page ate for a	cubco	and and roa	din rocuite		

a t n t e nserted between two $^{\prime}$ byte write pac ets for a subco and and read n results required for Hz f $_{cL}$ \leq Hz

ADD	A	CMD	A	DA A	A	DA A	A	ļ	μS		
ADD	A	CMD	A r	ADD	\square	A DA A	A	Ţ	DA A	N	μs

a t n t e nserted between nore enta 1 byte write pac et for a subco and and read n results acceptable for f $_{\rm CL} \leq -Hz$

ADD	A	CMD	A	r ADD	A	DA A	A	DA A	A
DA A	A	DA A	N	μs					

a,t,n t, e,nserted after,ncre enta read

bq27520-G4 SLUSB20-NOVEMBER 2012

www.ti.com

REFERENCE SCHEMATICS

SCHEMATIC

14 Submit Documentation Feedback

— TX3 — •

.

•

t

٠

PACKAGE OPTION ADDENDUM

24-Jan-2013

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type Package	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	
	(1)	Drawing			(2)		(3)		(4)	

PACKAGE MATERIALS INFORMATION

14-Mar-2013

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ27520YZFT-G4	DSBGA	YZF	15	250	180.0	8.4	2.1	2.76	0.81	4.0	8.0	Q1

PACKAGE MATERIALS INFORMATION

14-Mar-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BQ27520YZFT-G4	DSBGA	YZF	15	250	210.0	185.0	35.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconr	nectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated