

SLVSBS4-DECEMBER 2012

3-Phase Brushless Motor Driver

Check for Samples: DRV3211-Q1

FEATURES

DESCRIPTION

- 3-Phase Pre-drivers for N-channel MOS Field Effect Transistors (MOSFETs)
- Pulse Width Modulation (PWM) Frequency up to 20 kHz
- Fault Diagnostics
- Charge Pump
- Phase Comparators
- Phase Monitoring Sample and Hold Op-Amps
- Central Processing Unit (CPU) Reset Generator
- Serial Port I/F (SPI)
- Motor Current Sense
- 80-pin HTQFP
- 5-V Regulator

APPLICATIONS

Automotive

PINOUT

The DRV3211-Q1 device is a field effect transistor (FET) pre-driver designed for 3-phase motor control and its application such as an oil pump or a water pump. It is equipped with three high-side pre-FET drivers and three low-side drivers which are controlled by an external microcontroller (MCU). The power for the high side is supplied by a charge pump and no bootstrap cap is needed. For commutation, this integrated circuit (IC) sends a conditional motor drive signal and output to the MCU. Diagnostics provide undervoltage, overvoltage, overcurrent, overtemperature and power bridge faults. The motor current can be measured using an integrated current sense amplifier and comparator in a battery commonmode range, which allows the motor current to be used in a high-side current sense application. Gain is attained by external resistors. If the MCU does not have enough bandwidth, the phase monitoring sample and hold amplifiers can hold phase information until the MCU is ready to process it. The pre-driver and other internal settings can be configured through the SPI interface.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLVSBS4-DECEMBER 2012

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNITS
ESD ⁽¹⁾					
ESD all	FCD performance of all pipe to any other pip	HBM model	-2	2	kV
pins	ESD performance of all plus to any other plu	CDM model	-500	500	V
TEMPER	ATURE		·		
T _A	Operating temperature range		-40	125	degree
TJ	Junction temperature		-40	150	degree
Ts	Storage temperature		-55	150	degree

(1) ESD testing is performed according to the ACE-Q100 standard.

THERMAL INFORMATION

	TUEDMAL METRIC(1)	DRV3202-Q1		
		HTQP (80-PIN)	UNIT	
JA	Junction-to-ambient thermal resistance	23.0		
JCtop	Junction-to-case (top) thermal resistance	7.5		
JB	Junction-to-board thermal resistance	7.6	8C AA/	
JT	Junction-to-top characterization parameter	0.2	C/VV	
JB	Junction-to-board characterization parameter	7.4		
JCbot	Junction-to-case (bottom) thermal resistance	0.3		

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

SLVSBS4-DECEMBER 2012

SUPPLY VOLTAGE AND CURRENT

VB = 12 V, $T_A = -40^{\circ}C$ to 125°C (unless otherwise specified)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
SUPPI	LY INPUT					
VB	VB Supply voltage		5.3	12	18	V
I_{VB}	VB Operating current	VB = 5.3 ~18 V, No PWM		20	35	mA

WATCHDOG

Description

The watchdog monitors the PRN signal and V_{CC} supply level and generates a reset to the MCU through the $\overline{\text{RES}}$ pin if the status of the PRN is not normal or the V_{CC} is lower than the specified threshold level. The watchdog can be disabled if WDEN is set high.

Figure 2. Watchdog Block Diagram

SLVSBS4-DECEMBER 2012

NOTE: $\overline{WDEN} = High$, V_{CC} undervoltage condition sets $\overline{RES} = Low$

Figure 3. Watchdog Timing Chart

WATCHDOG ELECTRICAL CHARACTERISTICS⁽¹⁾

VB = 12 V, $T_A = -40^{\circ}$ C to 125°C (unless otherwise specified)

	PARAMETER ⁽²⁾	CONDITIONS	MIN	TYP	MAX	UNITS
WATCH	IDOG					
VSTN	Function start V _{CC} voltage RES		-	0.8	1.3	V
t _{ON}	Power-on time RES		32	40	48	ms
t _{OFF}	Clock off reset time RES		64	80	96	ms
t _{RL}	Reset pulse low time RES	Refer to Figure 3	16	20	24	ms
t _{RH}	Reset pulse high time RES		64	80	96	ms
t _{RES}	Reset delay time RES		30	71.5	90	μs
P _{wth}	Pulse width PRN		200	-	_	ns

(1) The watchdog function is disabled and the timing parameters are invalid when the WDEN is at a high level.
(2) Specified by design

SLVSBS4-DECEMBER 2012

SERIAL PORT I/F

Description

The SPI is used to receive an WWW byte from CPU and to transmit an output byte to CPU. Four signals are utilized according to the utilized

• DIN – Serial Input Data

- This input signal is used to receive 16-bit data.
- The bits are received in order from the MSB (first) to the LSB (last).
- The pin has an internal pullup.

• DOUT – Serial Output Data

- This output signal is used to transmit 16-bit data.
- It is a 3-state output and it is in high impedance mode when CS is high.
- The serial data bits are transmitted in order from the MSB (first) to the LSB (last).

SPI ELECTRICAL CHARACTERISTICS

```
VB = 12 V, T_A = -40^{\circ}C to 125°C (unless otherwise specified)
```

	PARAMETER ⁽¹⁾	CONDITIONS	MIN	TYP	MAX	UNITS
SPI						
Fop	Operating frequency		DC	-	4	MHz
T _{lead}	Enable lead time		100	-	-	ns
T _{wait}	Wait time between two successive communications		5	-	-	μs
T _{lag}	Enable lag time	Refer to Figure 6	100	-	_	ns
T_{pw}	SCLK pulse width		100	-	-	ns
T _{su}	Data setup time		80	-	-	ns
T _h	Data hold time		80	-	-	ns
T _{dis}	Disable time		-	-	80	ns
T _{del}	Data delay time (SCK to DOUT)	$C_L = 50 \text{ pF}$, Refer to Figure 6	-	-	80	ns

(1) Specified by design

STRUMEN

Figure 6. SPI AC Timing Definition

Table 1.	SPI	Bit	Мар	(DIN)
----------	-----	-----	-----	-------

ITEM	B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
COMMAND1	0	0	0	0	0	1	-	-	SHM	SRT	-	-	-	-	-	-
COMMAND2	0	0	0	0	1	0	-	-	AG1	AG0	-	-	-	-	-	-
COMMAND3	0	0	0	0	1	1	-	-	-	-	-	-	-	-	-	-
DIAG_READ1	0	0	1	0	0	0	-	-	-	-	-	-	-	-	-	-
DIAG_READ2	0	1	0	0	0	0	-	-	-	-	-	-	-	-	-	-
DIAG_READ3	0	1	1	0	0	0	-	-	-	-	-	-	-	-	-	-

In Table 1, the B15–B10

1	1	1	1	1	1	1	1			

DRV3211-Q1

SLVSBS4-DECEMBER 2012

Internal Diagnosis Register (Status Register and Shadow Register)

If the diagnosis happens during the SPI communication, the function follows this protocol:

The diagnosis information is stored in the shadow register when the diagnosis happens. After the output of the previous information a new diagnosis is sent from the shadow to the status register,

and both registers are output through the DOUT protecoFAUdappress47.666607784(683710(199))]attern ff 2300 and 1993 attern ff 2300 and 1993 attern ff 2300 and 1993 attern for the content of the content

CHARGE PUMP

Description

The charge pump block generates the supply for high-side and low-side pre-drivers to maintain the gate voltage on the external FETs. External storage cap (CCP) and bucket caps (C1, C2) are used to support pre-driver slope and switching frequency requirements. R1 and R2 can reduce switching current if required. The charge pump has a voltage supervisor for over and undervoltage, and a selectable stop condition for pre-drivers.

Figure 8. Charge Pump Block Diagram

SLVSBS4-DECEMBER 2012

CHARGE PUMP ELECTRICAL CHARACTERISTICS⁽¹⁾

VB = 12 V, $T_A = -40^{\circ}$ C to 125°C (unless otherwise specified)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CHARGE F	PUMP					
V _{chv1_0}		VB = 5.3 V, I_{load} = 0 mA, C1 = C2 = 47 nF, CCP = 2.2 μ F	VB + 7	VB + 8	VB + 9	V
V _{chv1_1}		VB = 5.3 V, I_{load} = 5 mA, C1 = C2 = 47 nF, CCP = 2.2 μF	VB + 6	VB + 7	VB + 8	V
V _{chv1_2}		VB = 5.3 V, I_{load} = 8 mA, C1 = C2 = 47 nF, CCP = 2.2 μF	VB + 5	VB + 6	VB + 7	V
V _{chv2_0}		VB = 12 V, I_{load} = 0 mA, C1 = C2 = 47 nF, CCP = 2.2 μF	VB + 13	VB + 14	VB + 15	V
V _{chv2_1}	Output voltage	VB = 12 V, I_{load} = 11 mA, C1 = C2 = 47 nF, CCP = 2.2 μF	VB + 13	VB + 14	VB + 15	V
V _{chv2_2}		VB = 12 V, I_{load} = 18 mA, C1 = C2 = 47 nF, CCP = 2.2 μF	VB + 12.5	VB + 13.5	VB + 15	V
V _{chv3_0}		VB = 18 V, I_{load} = 0 mA, C1 = C2 = 47 nF, CCP = 2.2 μF	VB + 13	VB + 14	VB + 15	V
V _{chv3_1}		VB = 18 V, I_{load} = 13 mA, C1 = C2 = 47 nF, CCP = 2.2 μF	VB + 13	VB + 14	VB + 15	V
V _{chv3_2}		VB = 18 V, I_{load} = 22 mA, C1 = C2 = 47 nF, CCP = 2.2 μF	VB + 13	VB + 14	VB + 15	V
V _{chvmax}	Maximum voltage		35	37.5	40	V
V _{chvUV}	Undervoltage detection threshold		VB + 4	VB + 4.5	VB + 5	V
T _{chv} ⁽²⁾	Rise time	VB = 5.3 V, C1 = C2 = 47 nF, CCP = 2.2 $\mu F,$ V_{chvUV} released		1	2	ms
Ron	On resistance S1~S4			8		

(1) No variation of the external components

(2) Specified by design

PRE-DRIVER

Description

The pre-driver block provides three high-side pre-drivers and three low-side pre-drivers to drive external Nchannel MOSFETs. The turn on side of the high-side pre-drivers supply the large N-channel transistor current to quickly charge and PMOS support output voltage up to PDCPV. The turn off side supplies the large N-channel transistor current to quickly discharge, while the low-side pre-drivers supply the large N-channel transistor current for charge and discharge. The output voltage of the low-side pre-driver is controlled by VB and it has VGS protection to make less than 18 V. The pre-driver has a stop condition in some fault conditions (\$16 Error Detection).

Figure 9. Pre-driver Block Diagram

SLVSBS4-DECEMBER 2012

PRE-DRIVER ELECTRICAL CHARACTERISTICS

VB = 12 V, $T_A = -40^{\circ}C$ to 125°C (unless otherwise specified)

PARAMETER	CONDITIONS	
	L	

SLVSBS4-DECEMBER 2012

PHASE COMPARATOR

Description

A 3-channel comparator module monitors the external FET by detecting voltage across the drain-source for highside and low-side FETs. PHTM is the threshold level of comparators usable for sensorless communication. Figure 11 shows an example of the threshold level. There is no detection when CTLEN = Low.

Figure 11. Phase Comparator Block Diagram

PHASE COMPARATORS ELECTRICAL CHARACTERISTICS

VB = 12 V, $T_A = -40^{\circ}$ C to 125°C (unless otherwise specified)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS				
PHASE COMPARATOR										
Viofs	Input offset voltage		-15	-	15	mV				
V _{inp}	Input voltage range (PHTM)	VB = 5.3 ~18 V	1.325	-	4.5	V				
V _{inm}	Input voltage range (PHxM)		-1	-	VB	V				
V _{ihys}	Input hysteresis voltage		100	200	400	mV				
V _{OH}	Output high voltage	I _{sink} = 2.5 mA	$0.9 \times V_{CC}$	-	_	V				
V _{OL}	Output low voltage	$I_{source} = 2.5 \text{ mA}$	-	-	$0.1 \times V_{CC}$	V				
T _{res_tr} ⁽¹⁾	Response time (rising)	C _L = 100 pF	-	0.2	0.5	μs				
T _{res_tf} ⁽¹⁾	Response time (falling)	C _L = 100 pF	-	0.4	1	μs				

(1) Specified by design

MOTOR CURRENT SENSE

Description

The operational amplifier is operating with an external resistor network for higher flexibility to adjust the current measurement to application requirements. The first stage amplifier is operating with the external resistor and the output voltage up to VB at ALFB. The gain of the amplifier is adjustable by external resistors from x10 to x30. The second stage amplifier is a buffer to MCU at ALV. Current sense has a comparator for motor overcurrent (OVAD). ADTH is the overcurrent threshold level and sets the value by the external resistor as well. Figure 13 shows the curve of the detection level. ALFB is divided by 2, compare this value with ADTH. In the recommended application, zero-point adjustment is required as a large error offset in the initial condition.

Figure 12. Motor Current Sense Block Diagram

MOTOR CURRENT SENSE ELECTRICAL CHARACTERISTICS⁽¹⁾

VB = 12 V, $T_A = -40^{\circ}$ C to 125°C (unless otherwise specified)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS		
MOTOR C	MOTOR CURRENT ⁽²⁾ SENSE							
V _{Ofs}	Input offset voltage		-5		5	mV		
V _{O_0}	Output voltage (ALV)	VB = 5.3 ~ 18 V, I _{motor} = 0 A		1		V		

(1) No variation of the external components

(2) Motor current is converted to voltage in test

Copyright © 2012, Texas Instruments Incorporated

DRV3211-Q1

SLVSBS4-DECEMBER 2012

Table 3. Motor Overcurrent Truth Table

RES	OVCR	MOTOR OVERCURRENT	OVAD	PRE-DRIVER ENABLE OR DISABLE
0	-	_	0 (Clear)	Disable ⁽¹⁾
1	0	_	0 (Clear) ⁽²⁾⁽³⁾	Enable
	1	0	Кеер	Enable
		1	1 (Set)	Disable

(1) The CTLEN goes to Hi-Z because the external CPU will not drive it when RES = 0, then all the pre-drivers are turned off because CTLEN is internally pulled down.

The OVAD is not set, even if a motor overcurrent error is generated during $\overline{OVCR} = 0$. The OVAD is cleared if $\overline{OVCR} = 0$ even when the motor overcurrent error is generated. (2)

(3)

PHASE AMPLIFIER (Sample and Hold Mode and Through Mode)

Description

The 3-channel amplifier module monitors the drain-source for high-side and low-side FETs. Two modes (selected by the SPI) are provided: sample and hold mode, and through mode. Sample and hold is controlled by PSSx at the external pins and PSCx connects the charging capacitor. Through mode is real-time detection and the amplifier has x1–x4 gain control.

Figure 15. Sample and Hold Mode Block Diagram

Figure 16. Through Mode Block Diagram

SLVSBS4 – DECEMBER 2012

Figure 17. Short Mode (Optional) Block Diagram

PHASE AMPLIFIER ELECTRICAL CHARACTERISTICS⁽¹⁾

VB = 12 V, $T_A = -40^{\circ}$ C to 125°C (unless otherwise specified)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
PHASE AMP	LIFIER					
V _{ofs_SH}	Output offset voltage, sample and hold mode	VB = 5.3–18 V, Gain = 1	-50	_	50	mV
V _{ofs_TH}	Output offset voltage, through mode	VB = 5.3–18 V, Gain = 1	-50	_	50	mV
V _{in_cm}	Common mode input range	VB = 5.3–18 V, Gain = 1–4	1.5		VB – 1.5	V
V _{out_max}	Maximum output voltage	VB = 5.3–18 V, Gain = 1–4	4.5	_	-	V
V _{out_min}	Minimum output voltage	VB = 5.3–18 V, Gain = 1–4	_	_	0.5	V
$V_{gain}^{(2)}$	Gain		_	1 2 3 4	-	
V _{out_SH0}	Output voltage, sample and hold mode	VB = 5.3–18 V, Gain = 1–4, PHxT = VB / 2	-	2.5	-	V
V _{out_TH0}	Output voltage, through mode	VB = 5.3–18 V, Gain = 1–4 PHxT = VB / 2	-	2.5	-	V
V _{out_SH1}	Output voltage, sample and hold mode	VB = 12 V, Gain = 1, PHxT = 1.5 V	-	1.375	-	V
V _{out_TH1}	Output voltage, through mode	VB = 12 V, Gain = 1, PHxT = 1.5 V	-	1.375	-	V
V _{out_SH2}	Output voltage, sample and hold mode	VB = 12 V, Gain = 1, PHxT = 10.5 V	-	3.625	-	V
V _{out_TH2}	Output voltage, through mode	VB = 12 V, Gain = 1, PHxT = 10.5 V	_	3.625	-	V
STL_SHTR	Settling time (rise), sample and hold mode PTVx $\pm 1\%$	VB = 12 V, Gain = 1, PSC = 470 pF, PTVx = 100 pF, PHxT = 1.5 V 10.5 V, (PTVx = 1.375 V 3.625 V), see Figure 20		1.5	3	μs
STL_THTR	Settling time (rise), through mode PTVx ±1%	VB = 12 V, Gain = 1, PTVx = 100 pF, PHxT = 1.5 V 10.5 V, (PTVx = 1.375 V 3.625 V), see Figure 21		1.5	3	μs
STL_SHTF	Settling time (fall), sample and hold mode PTVx ±1%	VB = 12 V, Gain = 1, PSC = 470 pF, PTVx = 100 pF, PHxT = 10.5 V 1.5 V, (PTVx = 3.625 V 1.375 V), see Figure 20		1.5	3	μs
STL_THTF	Settling time (fall), through mode PTVx ±1%	VB = 12 V, Gain = 1, PTVx = 100 pF, PHxT = 10.5 V 1.5V, (PTVx = 3.625 V 1.375 V), see Figure 21		1.5	3	μs
SH Error	Falling voltage	VB = 5.3–18 V, PSC = 470 pF, TH = 1 mS, see		5	75	mV

(1) No variation of the external components.

(2) V_{gain} is an SPI setting

Figure 18. Sampling Timing Chart

SLVSBS4 – DECEMBER 2012

SLVSBS4-DECEMBER 2012

REGULATORS

Description

The regulator block offers a 5-V LDO and a 3.3-V LDO. The V_{CC} LDO regulates VB down to 5 V with an external PNP controlled by the regulator block. The 5-V LDO is supplied to the MCU and other components. The 5-V LDO is protected against a short to GND fault, and the external resistors R1 and R2 set the undervoltage. The V_{DD} regulator regulates VB down to 3.3-V with an internal FET and a controller.

The regulators detect the overvoltage and undervoltage events of both supplies.

Figure 22. V_{CC} Block Diagram

SLVSBS4-DECEMBER 2012

V_{CC} AND V_{DD} ELECTRICAL CHARACTERISTICS⁽¹⁾

VB = 12 V, $T_A = -40^{\circ}$ C to 125°C (unless otherwise specified)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{cc}						
V _{CC}	Output voltage	VB = 5.3–18 V, I _{load} = 5–150 mA	4.9	5	5.1	V
IBVCC	Base current		1.5			mA
hfePNP	DC current gain of external VCC		100			
VLRVCC	Load regulation	$VB = 5.3-18 V$, $I_{load} = 5-150 mA$	-50	_	50	mV
CVCC	Load capacitance		22		100	μF
RVCC	ESR of external capacitance				300	m
VCCUV	Undervoltage detection threshold	R1 = 7.5 k , $R2 = 10 k$, VCCUV > 4 V	3.97	4.07	4.17	V
VCCUVHY S	Undervoltage detection threshold hysteresis			100		mV
VCCOV	Overvoltage detection threshold		6	6.5	7	V
ICLVCC	Current limit	R _{sns} = 0.51	300	400	550	mA
TVCC1	Rise time	V_{CC} > UVVCC, CVCC = 22 µF		0.3	0.5	ms
TVCC2	Rise time	V_{CC} > UVVCC, CVCC = 100 μ F		1	1.5	ms
V _{DD}						
V _{DD}	Output voltage	$VB = 5.3-18 V$, $I_{load} = 0-2 mA$	3	3.3	3.6	V
CVDD	Load capacitance			1		μF
VDDUV	Undervoltage detection threshold		2.2	2.3	2.4	V
VDDOV	Overvoltage detection threshold		4.1	4.3	4.5	V
T _{vdd} ⁽²⁾	Rise time	$V_{DD} > VDDUV, CVDD = 1 \mu F$		75	150	μs

(1) No variation of the external components

(2) Specified by design

VB Monitor

Description

The block monitors VB overvoltage.

Figure 24. VB Monitor Block Diagram

VB MONITOR ELECTRICAL CHARACTERISTICS

VB = 12 V, $T_A = -40^{\circ}$ C to 125°C (unless otherwise specified)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
VB MONI	TOR					
V _{stop}	Pre-driver stop VB voltage		26.5	27.5	28.5	V

SLVSBS4-DECEMBER 2012

THERMAL SHUTDOWN

Description

The device has temperature sensors that produce a pre-driver stop condition if the chip temperature exceeds 175°.

Figure 25. Thermal Shutdown Block Diagram

THERMAL SHUTDOWN ELECTRICAL CHARACTERISTICS

VB = 12 V, $T_A = -40^{\circ}$ C to 125°C (unless otherwise specified)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
THERMAL SHUT DOWN						
TSD ⁽¹⁾ Thermal shut do	wn threshold		155	175	195	°C

(1) Specified by design

OSCILLATOR

Description

Oscillator block generates two 10-MHZ clock signals. OSC1 is the main clock used for internal logic synchronization and timing control. OSC2 is the secondary clock which is used to monitor the status of OSC1.

Figure 26. Oscillator Block Diagram

SLVSBS4-DECEMBER 2012

www.ti.com

OSCILLATOR ELECTRICAL CHARACTERISTICS

VB = 12 V, $T_A = -40^{\circ}C$ to 125°C (unless otherwise specified)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
OSCILLA	TOR					
OSC	OSC frequency		9	10	11	MHz

I/O

Figure 27. Input Buffer 1 Block Diagram

Figure 28. Output Buffer 1 Block Diagram

Figure 29. Output Buffer 2 Block Diagram

Figure 30. Output Buffer 3 Block Diagram

ELECTRICAL CHARACTERISTICS

VB = 12 V, $T_A = -40^{\circ}C$ to 125°C (unless otherwise specified)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT BUFF	ER 1					
V _{IH}	Input threshold logic high		$0.7 \times V_{CC}$			V
V _{IL}	Input threshold logic low				$0.3 \times V_{CC}$	V
R _u	Input pullup resistance		50	100	150	k
R _d	Input pulldown resistance		50	100	150	k
OUTPUT BU	FFER 1 AND 2				·	
V _{OH}	Output level logic high	I _{sink} = 2.5 mA	$0.9 \times V_{CC}$			V
V _{OL}	Output level logic low	I _{source} = 2.5 mA			$0.1 \times V_{CC}$	V
OUTPUT BU	FFER 3					
R_RES	Pullup resistor		1.5	3	4.5	k
V _{OL}	Output level logic low	$I_{source} = 2 \text{ mA}$			$0.1 \times V_{CC}$	V

ERROR DETECTION

ITEMS	SPI	PRE-DRIVER	FAULT SIGNAL	RES
VB – Overvoltage	-	STOP	L	Н
CP – Overvoltage	-	STOP	L	Н
CP – Undervoltage	Error Bit (CPLV)	-	L	Н
V _{CC} – Overvoltage	Error Bit (VCO)	-	L	Н
V _{CC} – Undervoltage	-	STOP	L	L
V _{CC} – Overcurrent	Error Bit (V _{CC})	-	Н	Н
Motor – Overcurrent	Error Bit (OVAD)	STOP	Н	Н
V _{DD} – Overvoltage	Error Bit (VDO)	-	L	Н
V _{DD} – Undervoltage	-	STOP	L	L
Thermal Shut Down	Error Bit (TD)	STOP	Н	Н
Watchdog	-	-	L	L
EEPROM Data Check	Error Bit (EEP)	-	L	Н
Clock Monitor	-	-	L	L
SPI	Error Bit (SPI)	-	L	Н

Table 4. Error Detection

PACKAGE OPTION ADDENDUM

21-Mar-2013

4206327-

1

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconr	nectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated