


SLUS064 OCTOBER 1998 B

### **Pin Descriptions**

#### TM Time-out programming input

Sets the maximum charge time. The resistor and capacitor values are determined using Equation 5. Figure 10 shows the resistor/capacitor connection.

#### CHG Charge active output

An open-drain output is driven low when the battery is removed, during a temperature pend, when a fault condition is present, or when charge is done. CHG can be used to disable a high-value load capacitor to detect quickly any battery removal.

### BAT Battery voltage input

Sense input. This potential is generally developed using a high-impedance resistor divider network connected between the positive and the negative terminals of the battery. See Figures 6 and 7 and Equation 1.

#### VCOMP Voltage loop compensation input

Connects to an external R-C network to stabilize the regulated voltage.

#### ICOMP Current loop compensation input

Connects to an external R-C network to stabilize the regulated current.

#### ITERM Charge full and minimum current termination select

Three-state input is used to set  $I_{FULL}$  and  $I_{MIN}$  for fast charge termination. See Table 4.

#### SNS Charging current sense input

Battery current is sensed via the voltage developed on this pin by an external sense-resistor.

#### TS Temperature sense input

Used to monitor battery temperature. An external resistor-divider network sets the lower and upper temperature thresholds. (See Figures 8 and 9 and Equations 3 and 4.)

#### **TPWM** Regulation timebase input

Uses an external timing capacitor to ground to set the pulse-width modulation (PWM) frequency. See Equation 7.

#### BTST Battery test output

Driven high in the absence of a battery in order to provide a potential at the battery terminal when no battery is present.

#### LCOM Common LED output

Common output for LED<sub>1-2</sub>. This output is in a high-impedance state during initialization to read programming input on DSEL and CSEL.

VSS Ground

#### V<sub>CC</sub> V<sub>CC</sub> supply

5.0V, ±10%

#### MOD Current-switching control output

Pulse-width modulated push/pull output used to control the charging current to the battery. MOD switches high to enable current flow and low to inhibit current flow. (The maximum duty cycle is 80%.)

#### LED<sub>1</sub>- Charger display status 1-2 outputs LED<sub>2</sub>

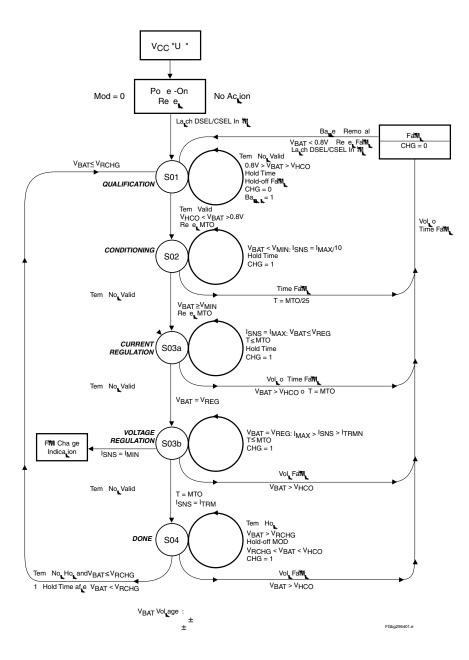
Drivers for the direct drive of the LED display. These outputs are tri-stated during initialization so that DSEL and CSEL can be read.

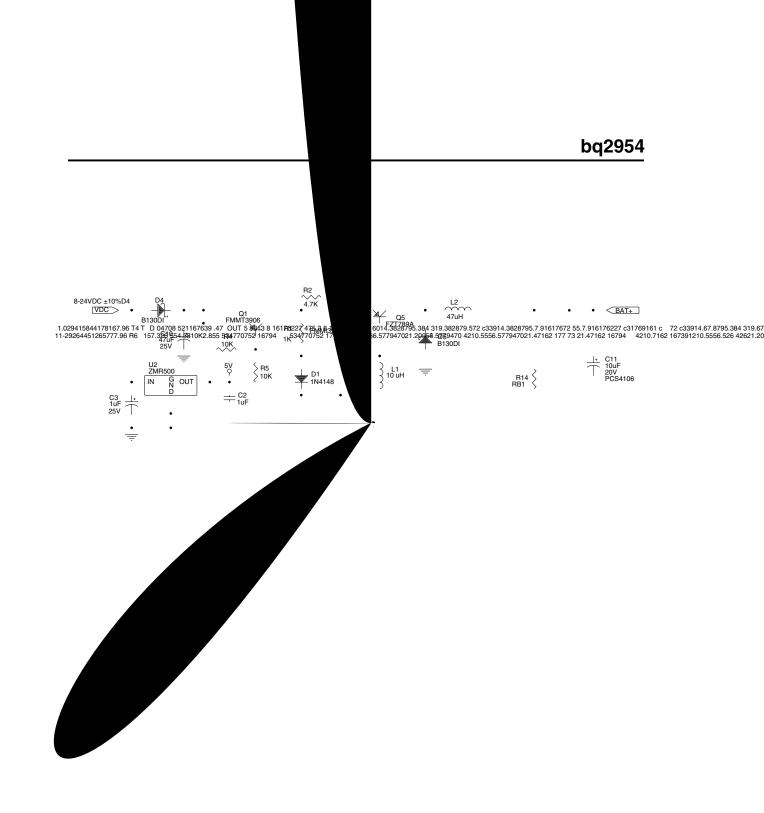
## DSEL Display select input (shared pin with LED<sub>2</sub>)

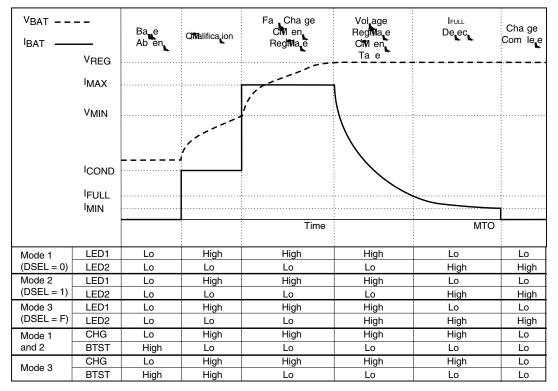
Three-level input that controls the  $LED_{1\!-\!2}$  charge display modes.

## CSEL Charge sense-select input (shared pin with LED<sub>1</sub>)

Input that controls whether current is sensed on low side of battery or high side of battery. A current mirror is required for high-side sense.


## **Functional Description**


The bq2954 functional operation is described in terms of the following (Figure 1):


- Charge algorithm
- Charge qualification
- Charge status display
- Configuring the display and termination
- Voltage and current monitoring
- Battery insertion and removal
- Temperature monitoring
- Maximum time--out
- Charge regulation
- Recharge after fast charge

## **Charge Algorithm**

The bq2954 uses a two-phase fast-charge algorithm. In







#### Table 1. Normal Fast Charge Cycle

GR295401.e

time-out limit tqT (i.e., the battery has failed short), the bq2954 enters the Fault state. Then tqT is set to 25% of tMTO. If VMIN is achieved before expiration of the time limit, the bq2954 begins fast charging.

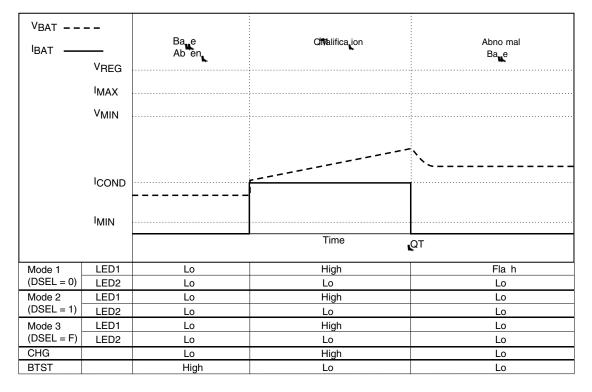
Once in the Fault state, the bq2954 waits until  $V_{CC}$  is cycled or a new battery insertion is detected. It then starts a new charge cycle and begins the qualification process again.

### **Charge Status Display**

Charge status is indicated by the LED driver outputs LED<sub>1</sub>–LED<sub>2</sub>. Three display modes (Tables 1– 3) are available in the bq2954 and are selected by configuring pin DSEL. Table 1 illustrates a normal fast charge cycle, Table 2 a recharge-after-fast-charge cycle, and Table 3 an abnormal condition.

# Configuring the Display Mode, $I_{FULL}/I_{MIN}$ , and $I_{SENSE}$

DSEL/LED<sub>2</sub> and CSEL/LED<sub>1</sub> are bi-directional pins with two functions: as LED driver pins (output) and as programming pins (input). The selection of pull-up, pull-down, or no-resistor programs the display mode on DSEL as shown in Tables 1 through 3. A pull-down or no-resistor programs the current-sense mode on CSEL.


The bq2954 latches the programming data sensed on the DSEL and CSEL input when  $V_{CC}$  rises to a valid level. The LEDs go blank for approximately 400ms (typical) while new programming data are latched.

When fast charge reaches a condition where the charging current drops below I<sub>FULL</sub>, the LED1 and LED2 outputs indicate a full-battery condition. Fast charge terminates when the charging current drops below the

| VBAT       | – –<br>                               | Cha ge Com le e | Fa Chage<br>CM en<br>RegMae | Volage<br>Regiviae<br>Civien<br>Tae |      | Cha ge<br>Com le e |
|------------|---------------------------------------|-----------------|-----------------------------|-------------------------------------|------|--------------------|
| v          | I <sub>MAX</sub><br>RECHG             | Di cha ge       | ,<br>,<br>,                 |                                     |      |                    |
|            | VMIN                                  |                 |                             |                                     |      |                    |
|            | ICOND                                 |                 |                             |                                     |      |                    |
|            | I <sub>FULL</sub><br>I <sub>MIN</sub> |                 |                             |                                     |      | 1                  |
|            |                                       |                 | Time                        |                                     | МТО  |                    |
| Mode 1     | LED1                                  | Lo              | High                        | High                                | Lo   | Lo                 |
| (DSEL = 0) | LED2                                  | High            | Lo                          | Lo                                  | High | High               |
| Mode 2     | LED1                                  | Lo              | High                        | High                                | Lo   | Lo                 |
| (DSEL = 1) | LED2                                  | High            | Lo                          | Lo                                  | High | High               |
| Mode 3     | LED1                                  | Lo              | High                        | High                                | Lo   | Lo                 |
| (DSEL = F) | LED2                                  | High            | Lo                          | High                                | High | High               |
| Mode 1     | CHG                                   | Lo              | High                        | High                                | High | Lo                 |
| and 2      | BTST                                  | Lo              | Lo                          | Lo                                  | Lo   | Lo                 |
| Mode 3     | CHG                                   | Lo              | High                        | High                                | High | Lo                 |
| WICCE 5    | BTST                                  | Lo              | Lo                          | Lo                                  | Lo   | Lo                 |

### Table 2. Recharge After Fast Charge Cycle

G b 295402.e



### Table 3. Abnormal Condition

GR295403.e

### Table 4. $I_{\mbox{FULL}}$ and $I_{\mbox{MIN}}$ Thresholds

| ITERM | IFULL                | IMIN                 |
|-------|----------------------|----------------------|
| 0     | I <sub>MAX</sub> /5  | I <sub>MAX</sub> /10 |
| 1     | I <sub>MAX</sub> /10 | I <sub>MAX</sub> /15 |
| Z     | I <sub>MAX</sub> /15 | I <sub>MAX</sub> /20 |

minimum current threshold,  $I_{MIN}$ . The  $I_{FULL}$  and  $I_{MIN}$  thresholds are programmed using the  $I_{TERM}$  input pin (See Table 4.)

Figures 4 and 5 show the bq2954 configured for display mode 2 and  $I_{FULL}$  =  $I_{MAX}/5$  while  $I_{MIN}$  =  $I_{MAX}/10.$ 

### Voltage and Current Monitoring

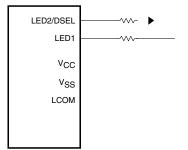
In low-side current sensing, the bq2954 monitors the battery pack voltage as a differential voltage between BAT and pins. In high-side current sensing, the bq2954 monitors the battery pack voltage as a differential voltage between BAT and V<sub>SS</sub> pins. This voltage is derived by scaling the battery voltage with a voltage divider. (See Figures 6 and 7.) The resistance of the voltage divider must be high enough to minimize battery drain but low enough to minimize noise susceptibility. RB1 + RB2 is typically between 150k $\Omega$  and 1M $\Omega$ . The voltage-divider resistors are calculated from the following:

$$\frac{RB1}{RB2} = \frac{N * V_{CELL}}{V_{REG}} - 1$$
(1)

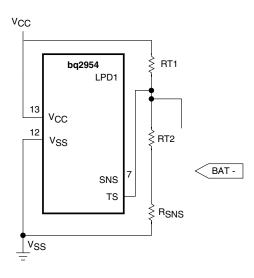
where

 $V_{CELL}$  = Manufacturer-specified charging cell voltage N = Number of cells in series  $V_{REG}$  = 2.05V

The current sense resistor, R<sub>SNS</sub> (see Figures 6 and 7), determines the fast-charge current. The value of R<sub>SNS</sub> is given by the following:


$$R_{_{SNS}} = \frac{0.25V}{I_{_{MAX}}} \tag{2}$$

where  $I_{MAX}$  is the current during the constant-current phase of the charge cycle. (See Table 1.)


### **Battery Insertion and Removal**

VBAT is interpreted by the bq2954 to detect the presence or absence of a battery. The bq2954 determines that a battery is present when VBAT is between the High-Voltage Cutoff (V<sub>HCO</sub> = V<sub>REG</sub> + 0.25V) and the Low-Voltage Cutoff (V<sub>LCO</sub> = 0.8V). When VBAT is outside this range, the bq2954 determines that no battery is present and transitions to the battery test state, testing for valid battery voltage. The bq2954 detects battery removal when VBAT falls below V<sub>LCO</sub>. The BTST pin is driven high during battery test and can activate an exter-

## bq2954



FGb 295402LS.e



FGb 295404LS.e

### **Disabling Temperature Sensing**

Temperature sensing can be disabled by placing a  $10k\Omega$  resistor between TS and BAT- and a  $10k\Omega$  resistor between TS and V<sub>CC</sub>. See Figures 8 and 9.

### **Maximum Time-Out**

Maximum Time-Out period  $(t_{MTO})$  is programmed from 1 to 24 hours by an R-C network on the TM pin (see Figure 10) per the following equation:

$$t_{MTO} = 500 * R * C$$
 (5)

where R is in ohms, C is in Farads, and  $t_{\rm MTO}$  is in hours. The recommended value for C is  $0.1 \mu F.$ 

The MTO timer is reset at the beginning of fast charge. If the MTO timer expires during the voltage regulation phase, fast charging terminates and the bq2954 enters the Charge Complete state. If the conditioning phase continues for time equal to  $t_{QT}$  (MTO/4) and the battery potential does not reach VMIN, the bq2954 enters the fault state and terminates charge. See Table 3. If the MTO timer expires during the current-regulation phase (VBAT never reaches VREG), fast charging is terminated, and the bq2954 enters the fault state.

### **Charge Regulation**

The bq2954 controls charging through pulse-width modulation of the MOD output pin, supporting both constant-current and constant-voltage regulation. Charge current is monitored at the SNS pin, and charge voltage is monitored at the BAT pin. These voltages are compared to an internal reference, and the MOD output is modulated to maintain the desired value. The maximum duty cycle is 80%.

Voltage at the SNS pin is determined by the value of resistor  $R_{\rm SNS},$  so nominal regulated current is set by the following equation:

The switching frequency of the MOD output is determined by an external capacitor (CPWM) between the pin TPWM and VSS pins, per the following:

$$f_{PWM} = \frac{1 * 10^{-4}}{C_{PWM}}$$
(7)

Where C is in Farads and the frequency is in Hz. A typical switching rate is 100kHz, implying CPWM =  $0.001\mu$ F. MOD pulse width is modulated between 0 and 80% of the switching period.

| Symbol           | Parameter                                                                           | Minimum | Maximum | Unit | Notes          |
|------------------|-------------------------------------------------------------------------------------|---------|---------|------|----------------|
| V <sub>CC</sub>  | V <sub>CC</sub> relative to V <sub>SS</sub>                                         | -0.3    | +7.0    | v    |                |
| VT               | DC voltage applied on any pin excluding V <sub>CC</sub> relative to V <sub>SS</sub> | -0.3    | +7.0    | v    |                |
| <b>m</b>         |                                                                                     | -20     | +70     | °C   | Commercial     |
| TOPR             | Operating ambient temperature                                                       | -40     | +85     | °C   | Industrial "N" |
| T <sub>STG</sub> | Storage temperature                                                                 | -55     | +125    | °C   |                |
| TSOLDER          | Soldering temperature                                                               | -       | +260    | °C   | 10s max.       |

## **Absolute Maximum Ratings**

**Note:** Permanent device damage may occur if **Absolute Maximum Ratings** are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

## DC Thresholds (TA = TOPR; VCC = 5V $\pm 10\%$ )

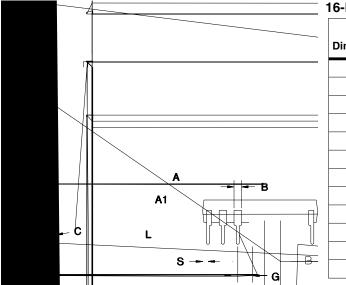
| Symbol           | Parameter                         | Rating            | Unit  | Tolerance    | Notes                  |
|------------------|-----------------------------------|-------------------|-------|--------------|------------------------|
| VREG             | Internal reference voltage        | 2.05              | v     | 1%           | $TA = 25^{\circ}C$     |
|                  | Temperature coefficient           | -0.5              | mV/°C | 10%          |                        |
| VLTF             | TS maximum threshold              | 0.6 * VCC         | v     | $\pm 0.03 V$ | Low-temperature fault  |
| V <sub>HTF</sub> | TS hysteresis threshold           | $0.44 * V_{CC}$   | v     | $\pm 0.03 V$ | High-temperature fault |
| VTCO             | TS minimum threshold              | 0.4 * VCC         | v     | $\pm 0.03 V$ | Temperature cutoff     |
| V <sub>HCO</sub> | High cutoff voltage               | $V_{REG}$ + 0.25V | v     | $\pm 0.03 V$ |                        |
| V <sub>MIN</sub> | Under-voltage threshold at BAT    | 1.5               | v     | $\pm 0.05 V$ |                        |
| VRECHG           | Recharge voltage threshold at BAT | 1.92              | v     | $\pm 0.05 V$ |                        |
| V <sub>LCO</sub> | Low cutoff voltage                | 0.8               | v     | $\pm 0.03 V$ |                        |
| <b>X</b> 7       |                                   | 0.250             | v     | 10%          | I <sub>MAX</sub>       |
| V <sub>SNS</sub> | Current sense at SNS              | 0.025             | v     | 10%          | ICOND                  |

## **Recommended DC Operating Conditions** (TA = TOPR)

| Symbol                              | Parameter                                | Minimum               | Typical | Maximum             | Unit | Notes                                           |
|-------------------------------------|------------------------------------------|-----------------------|---------|---------------------|------|-------------------------------------------------|
| V <sub>CC</sub>                     | Supply voltage                           | 4.5                   | 5.0     | 5.5                 | v    |                                                 |
| VTEMP                               | TS voltage potential                     | 0                     | -       | VCC                 | v    | VTS - VSNS                                      |
| VBAT                                | BAT voltage potential                    | 0                     | -       | VCC                 | v    |                                                 |
| $\mathbf{I}_{\mathbf{C}\mathbf{C}}$ | Supply current                           | -                     | 2       | 4                   | mA   | Outputs unloaded                                |
|                                     | DSEL tri-state open detection            | -2                    | -       | 2                   | μΑ   | Note                                            |
| $I_{IZ}$                            | ITERM tri-state open detection           | -2                    |         | 2                   | μΑ   |                                                 |
| $\mathrm{v}_\mathrm{IH}$            | Logic input high                         | V <sub>CC</sub> - 0.3 | -       | -                   | V    | DSEL, I <sub>TERM</sub>                         |
| $\mathrm{V}_{\mathrm{IL}}$          | Logic input low                          | -                     | -       | $V_{SS} + 0.3$      | V    | DSEL, CSEL, I <sub>TERM</sub>                   |
|                                     | LED1, LED2, BTST, output high            | Vcc - 0.8             | -       | -                   | V    | $I_{OH} \leq 10 mA$                             |
| VOH                                 | MOD output high                          | Vcc - 0.8             | -       | -                   | V    | $I_{OH} \leq 10 mA$                             |
|                                     | LED1, LED2, BTST, output low             | -                     | -       | $\mathrm{Vss}$ +0.8 | V    | $I_{OL} \leq 10 mA$                             |
|                                     | MOD output low                           | -                     | -       | $V_{\rm SS}$ + 0.8  | V    | $I_{OL} \leq 10 mA$                             |
| VOL                                 | CHG output low                           | -                     | -       | $V_{\rm SS}$ + 0.8  | V    | $I_{OL} \leq 5mA,$ Note 3                       |
|                                     | LCOM output low                          | -                     | -       | $V_{SS} + 0.5$      | V    | $I_{OL} \leq 30 mA$                             |
|                                     | $LED_1$ , $LED_2$ , BTST, source         | -10                   | -       | -                   | mA   | $V_{OH} = V_{CC} - 0.5V$                        |
| IOH                                 | MOD source                               | -5.0                  | -       | -                   | mA   | $V_{OH} = V_{CC} - 0.5V$                        |
|                                     | LED1, LED2, BTST, sink                   | 10                    | -       | -                   | mA   | $\mathrm{VOL} = \mathrm{VSS} + 0.5\mathrm{V}$   |
|                                     | MOD sink                                 | 5                     | -       | -                   | mA   | $\mathrm{VOL} = \mathrm{VSS} + 0.8\mathrm{V}$   |
| IOL                                 | CHG sink                                 | 5                     | -       | -                   | mA   | $V_{\rm OL}$ = $V_{\rm SS}$ + 0.8V, Note 3      |
|                                     | LCOM sink                                | 30                    | -       | -                   | mA   | $\mathrm{V_{OL}}=\mathrm{V_{SS}}+0.5\mathrm{V}$ |
| $I_{IL}$                            | DSEL logic input low source              | -                     | -       | +30                 | μΑ   | $V$ = $V_{SS}$ to $V_{SS}$ + 0.3V, Note 2       |
| чЦ                                  | I <sub>TERM</sub> logic input low source | -                     | -       | +70                 | μΑ   | $V$ = $V_{\rm SS}$ to $V_{\rm SSTERM}$          |

| Symbol             | Parameter                                                                | Minimum | Typical | Maximum | Unit | Notes      |
|--------------------|--------------------------------------------------------------------------|---------|---------|---------|------|------------|
| R <sub>BATZ</sub>  | BAT pin input impedance                                                  | 50      | -       | -       | MΩ   |            |
| R <sub>SNSZ</sub>  | SNS pin input impedance                                                  | 50      | -       | -       | MΩ   |            |
| R <sub>TSZ</sub>   | TS pin input impedance                                                   | 50      | -       | -       | MΩ   |            |
| R <sub>PROG1</sub> | Soft-programmed pull-up or pull-down<br>resistor value (for programming) | -       | -       | 10      | kΩ   | DSEL, CSEL |
| RPROG2             | Pull-up or pull-down resistor value                                      | -       | -       | 3       | kΩ   | ITERM      |
| R <sub>MTO</sub>   | Charge timer resistor                                                    | 20      | -       | 480     | kΩ   |            |

## Impedance (T<sub>A</sub> = T<sub>OPR</sub>; V<sub>CC</sub> = 5V $\pm$ 10%)


## Timing (TA = TOPR; VCC = 5V $\pm$ 10%)

| Symbol           | Parameter                            | Minimum | Typical     | Maximum | Unit  | Notes          |
|------------------|--------------------------------------|---------|-------------|---------|-------|----------------|
| t <sub>MTO</sub> | Charge time-out range                | 1       | -           | 24      | hours | See Figure 10  |
| tQT              | Pre-charge qual test time-out period | -       | 0.25 * tmto | -       | -     |                |
| $t_{\rm HO}$     | Pre-charge qual test hold-off period | 300     | 600         | 900     | ms    |                |
| fPWM             | PWM regulator frequency range        | -       | 100         | 200     | kHz   | See Equation 7 |
| dPWM             | Duty cycle                           | 0       | -           | 80      | %     |                |

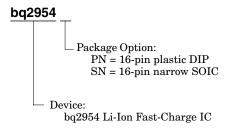
## Capacitance

| Symbol | Parameter              | Minimum | Typical | Maximum | Unit |
|--------|------------------------|---------|---------|---------|------|
| Смто   | Charge timer capacitor | -       | -       | 0.1     | μF   |
| CPWM   | PWM capacitor          | -       | 0.001   | -       | μF   |

## 16-Pin DIP Narrow (PN)



|           | •         |       |             |       |  |
|-----------|-----------|-------|-------------|-------|--|
|           | Inc       | hes   | Millimeters |       |  |
| Dimension | Min. Max. |       | Min.        | Max.  |  |
| А         | 0.160     | 0.180 | 4.06        | 4.57  |  |
| A1        | 0.015     | 0.040 | 0.38        | 1.02  |  |
| В         | 0.015     | 0.022 | 0.38        | 0.56  |  |
| B1        | 0.055     | 0.065 | 1.40        | 1.65  |  |
| С         | 0.008     | 0.013 | 0.20        | 0.33  |  |
| D         | 0.740     | 0.770 | 18.80       | 19.56 |  |
| Е         | 0.300     | 0.325 | 7.62        | 8.26  |  |
| E1        | 0.230     | 0.280 | 5.84        | 7.11  |  |
| е         | 0.300     | 0.370 | 7.62        | 9.40  |  |
| G         | 0.090     | 0.110 | 2.29        | 2.79  |  |
| L         | 0.115     | 0.150 | 2.92        | 3.81  |  |
| S         | 0.020     | 0.040 | 0.51        | 1.02  |  |


## 16-Pin PN (0.300" DIP)

## **Data Sheet Revision History**

| Change N | Io. Page No. | Description of Change                      |
|----------|--------------|--------------------------------------------|
| 1        | All          | "Final" changes from "Preliminary" version |

Note: Change 1 = Oct. 1998 B changes from Nov. 1997 "Preliminary."

## **Ordering Information**



### IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH,



11-Apr-2013

## **PACKAGING INFORMATION**

| Orderable Device | Status | Package Type | •       | Pins | Package | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | Top-Side Markings  | Samples |
|------------------|--------|--------------|---------|------|---------|----------------------------|------------------|--------------------|--------------|--------------------|---------|
|                  | (1)    |              | Drawing |      | Qty     | (2)                        |                  | (3)                |              | (4)                |         |
| BQ2954PN         | ACTIVE | PDIP         | Ν       | 16   | 25      | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type | 0 to 70      | 2954PN-A3          | Samples |
| BQ2954PNE4       | ACTIVE | PDIP         | Ν       | 16   | 25      | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type | 0 to 70      | 2954PN-A3          | Samples |
| BQ2954SN         | ACTIVE | SOIC         | D       | 16   | 40      | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | 0 to 70      | 2954<br>(-A3 ~ A3) | Samples |
| BQ2954SNG4       | ACTIVE | SOIC         | D       | 16   | 40      | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | 0 to 70      | 2954<br>(-A3 ~ A3) | Samples |
| BQ2954SNTR       | ACTIVE | SOIC         | D       | 16   | 2500    | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | 0 to 70      | 2954<br>(-A3 ~ A3) | Samples |
| BQ2954SNTRG4     | ACTIVE | SOIC         | D       | 16   | 2500    | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | 0 to 70      | 2954<br>(-A3 ~ A3) | Samples |

(1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in et172.54a/F3 8 Tf 1 0 0 -1 0 6.844 Tm [(LIFEBUi7ill) 2 23.612999 m 62.36ir23 8 Tf 1 0 0 -1 36.888 6.844 Tm [() (TI Q q 22.677 23.6



## PACKAGE OPTION ADDENDUM

11-Apr-2013

**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

Texas Instruments

### TAPE AND REEL INFORMATION



| *All dimensions | are | nominal |
|-----------------|-----|---------|

| Device     | Package<br>Type | Package<br>Drawing | Pins |      | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| BQ2954SNTR | SOIC            | D                  | 16   | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |



www.ti.com

## PACKAGE MATERIALS INFORMATION

26-Jan-2013



\*All dimensions are nominal

| Device     | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|------------|--------------|-----------------|------|------|-------------|------------|-------------|
| BQ2954SNTR | SOIC         | D               | 16   | 2500 | 367.0       | 367.0      | 38.0        |

### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to